A Heuristic Adaptive Fast Gradient Method in Stochastic Optimization Problems
نویسندگان
چکیده
منابع مشابه
A FAST GA-BASED METHOD FOR SOLVING TRUSS OPTIMIZATION PROBLEMS
Due to the complex structural issues and increasing number of design variables, a rather fast optimization algorithm to lead to a global swift convergence history without multiple attempts may be of major concern. Genetic Algorithm (GA) includes random numerical technique that is inspired by nature and is used to solve optimization problems. In this study, a novel GA method based on self-a...
متن کاملSpectral projected gradient method for stochastic optimization
We consider the Spectral Projected Gradient method for solving constrained optimization porblems with the objective function in the form of mathematical expectation. It is assumed that the feasible set is convex, closed and easy to project on. The objective function is approximated by a sequence of Sample Average Approximation functions with different sample sizes. The sample size update is bas...
متن کاملDistributed Stochastic Optimization via Adaptive Stochastic Gradient Descent
Stochastic convex optimization algorithms are the most popular way to train machine learning models on large-scale data. Scaling up the training process of these models is crucial in many applications, but the most popular algorithm, Stochastic Gradient Descent (SGD), is a serial algorithm that is surprisingly hard to parallelize. In this paper, we propose an efficient distributed stochastic op...
متن کاملFLAG: Fast Linearly-Coupled Adaptive Gradient Method
The celebrated Nesterov’s accelerated gradient method offers great speed-ups compared to the classical gradient descend method as it attains the optimal first-order oracle complexity for smooth convex optimization. On the other hand, the popular AdaGrad algorithm competes with mirror descent under the best regularizer by adaptively scaling the gradient. Recently, it has been shown that the acce...
متن کاملA Self-Adaptive Heuristic Algorithm for Combinatorial Optimization Problems
This paper introduces a new self-tuning mechanism to the local search heuristic for solving of combinatorial optimization problems. Parameter tuning of heuristics makes them difficult to apply, as parameter tuning itself is an optimization problem. For this purpose, a modified local search algorithm free from parameter tuning, called SelfAdaptive Local Search (SALS), is proposed for obtaining q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Mathematics and Mathematical Physics
سال: 2020
ISSN: 0965-5425,1555-6662
DOI: 10.1134/s0965542520070088